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J. Phys. A: Math. Gen. 15 (1982) 3509-3523. Printed in Great Britain 

Representation of quantum mechanical wavefunctions by 
complex valued extensions of classical canonical 
transformation generators 

C Jung and H Kruger 
Fachbereich Physik, Universitat, 6750 Kaiserlautern, West Germany 

Received 6 April 1982 

Abstract. Sufficient conditions are given for the possibility to construct quantum 
mechanical wavefunctions by the sole knowledge of an appropriate sequence of classical 
canonical transformations which map a given Hamiltonian onto the new position variable. 
The transformation matrix element for each individual step of this sequence is given by 
the semiclassical limit expression of these matrix elements; it is a function of the generator 
of this transformation step only. The wavefunction, i.e. the transformation matrix element 
for the total transformation, is obtained as a multiple integral over the transformation 
matrix elements of the various intermediate steps. The practicability of this procedure is 
demonstrated by several examples. In this paper we consider time-independent systems 
with one degree of freedom. 

1. Introduction 

The equations of classical mechanics are form invariant under canonical transforma- 
tions. Therefore, we are able to choose in phase space that canonical coordinate 
system in which the Hamiltonian function of the system under study has the most 
convenient form. The big advantage of such a choice for investigating mechanical 
systems is well known. Thus the desire arises to apply canonical transformations in 
quantum mechanics as well, in order to achieve an analogolis simplification of the 
quantum mechanical Hamiltonian operator. However, the formulation of quantum 
mechanics is based essentially on a description in Cartesian position and momentum 
variables and only little is known on how the knowledge of classical canonical 
transformations can be used in a quantum mechanical treatment. 

The important quantities for the quantum mechanical representation of canonical 
transformations are the scalar products of eigenstates of the old and new position or 
momentum operators. For the particular transformation which maps the Hamiltonian 
H onto the new position variable, these matrix elements are the solutions of the 
Schrodinger equation (see e.g. Miller 1974, § IIC). It is not possible to give these 
quantum mechanical matrix elements for all canonical transformations in terms of 
known functions. However, it has been shown by Miller (1974) how all canonical 
transformations can be handled semiclassically. The semiclassical position matrix 
elements of that particular transformation, which maps H onto the new position 
variable, are just the standard WKB approximation for the wavefunctions (see Miller 
1974, equation (2.65)). These WKB functions are given as functions of the generator 

0305-4470/82/113509+ 15$02.00 @ 1982 The Institute of Physics 3509 



3510 C Jung and H Kriiger 

of the classical canonical tranformation only. But standard WKB functions are singular 
at turning points and therefore they are not suited for many applications. 

Hence the following question arises: can we improve this and use classical gen- 
erators to construct wavefunctions which are free of caustics, i.e. uniformly valid, or 
perhaps even exact wavefunctions? Related to this is the following question; for which 
class of canonical transformations is it possible to calculate the quantum mechanical 
matrix elements exactly in terms of known functions? Is it possible to decompose a 
complicated transformation into a sequence of simple ones, where each member of 
the sequence is known exactly? 

For example, for linear canonical transformations the semiclassical representation 
is quantum mechanically exact (see Moshinsky and Quesne 1971, Eckelt 1979). But 
the iteration of linear transformations always results in linear transformations. There- 
fore, linear transformations are too restricted for building up more complicated 
transformations. We need a class of canonical transformations fulfilling the following 
two requirements. (i) They are simple enough, so that the exact quantum mechanical 
matrix elements are known as functions of the generators. (ii) They must contain 
nonlinear transformations which, by composition, form more complicated mappings. 

The purpose of this paper is to work out these ideas. In 0 2 we explain our notation 
and demonstrate our method of composing a complicated transform from simple ones. 
In 0 3 we derive sufficient conditions for the exactness of semiclassical representations 
of canonical transformations. Section 4 shows some illustrative examples and § 5 
contains final remarks. Throughout, we restrict ourselves to systems with one degree 
of freedom and to time-independent tranformations. 

2. Notation and the composition of canonical transformations in quantum 
mechanics 

Since we study the composition of, say, N-1  canonical transforms, defining in the 
two-dimensional phase space a sequence of N coordinate systems, it is, for the sake 
of clarity, an indispensable necessity to use a well defined notation. In detail, qi and 
pi are the position and momentum variable in the ith coordinate system. (ii and pi 
are the corresponding quantum mechanical operators. l q i ( x ) )  and Ipi (y )) are eigenstates 
of the operators di and Bi with eigenvalues x and y respectively, i.e. 

The initial coordinate system 1 consists of the standard position and momentum 
variables and the system under study is described by a Hamiltonian function Hljql, pl)  
classically or a Hamiltonian operator A l ( d 1 ,  $1) quantum mechanically, where H I  = H I  
[ x ,  (ha/i)/(a/d,)] with some ordering prescription. 

Let us assume that coordinate system N has the followjng property. If 41 and $1 

are expressed as functions of 4~ and f l N  and inserted into H I ,  then 

A ~ , ( ~ * N , B N ) = A ~ ( ~ ~ ( ~ N , P I N ) , P * ~ ( ~ * N ~ P * N ) ) = ( ~ N .  ( 2 )  

It is evident that the scalar product 
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is a solution of the Schrodinger equation 

(4) 
h a  

HI ( x ,  i d*) 4b (x, E )  = J54b (x, E )  

(see also 0 IIB in Miller 1974). The scalar product (3) is the position matrix element 
of the canonical transformation which maps from system 1 to system N. Therefore, 
in order to find a solution of the Schrodinger equation, it is sufficient to know a way 
of calculating matrix elements of appropriate canonical transformations. Since it is 
not possible, in general, to construct an exact solution of the Schrodinger equation 
in terms of known functions, the same also holds for the exact matrix elements of 
any complicated canonical transformation. One way to arrive at closed-form 
expressions for matrix elements of complicated transformations would be to decom- 
pose this transformation into a sequence of sufficiently simple ones with exactly known 
matrix elements. We shall take intermediate steps, for which the exact quantum 
mechanical matrix elements coincide with the semiclassical expressions. We assume 
that all intermediate steps are sufficiently close to the identity such that they can be 
given in terms of generators of type 2 or 3. Without loss of generality we may assume 
that N - 1, the number of steps, is even (if not, this can always be achieved by inserting 
additional identities) and that the various steps are defined by generators of type 2 
and 3, alternately. 

For shorter notation we use the abbreviations r = 21 + 2, r f  = r f 1 in the following. 
A transformation from coordinate system r -  to coordinate system r is given by the 
generator F;- (+-, p r )  and the transformation from coordinate system r to coordinate 
system r+ is given by the generator F; ( p ,  qr+) for all 1 E (0, 1, . . . , (N - 3)/2}. Lower 
indices denote the type of the generator. 

The corresponding semiclassical transformation matrix elements then are (see 
Miller 1974, equation (2.50), Eckelt 1979, equation (3.25)) 

(o is quantum mechanically exact if it satisfies the conditions (see Eckelt 1970, equations 
(2.13) and (2.14)) 

Y C P ' ~ ,  Y 1 = q r + ( 4 r 9  Dr)V'(x, Y 1 ( 6 4  

where ir = ih a/&, f ir  = x. 
The composition of an even number of steps always results in a matrix element 

of two position eigenstates. Therefore, we also need the equations which are fulfilled 
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by the exact scalar product of two position eigenstates (see Eckelt 1979, equation (2.12) 

X ( X ,  ~)=(qr-(x) lq2k+l(~))  

is exact if 

Y X ( X ,  Y )  =q2k+l(dr-, f i r - ) x ( x ,  Y 1. 
The matrix element for the total transformation is given by 

(p2(z2)lq3(z3)) * (qN-2(ZN-2)1PN-l(ZN-I))(PN-l(~N-l)/qN(E)). (7)  
In order to avoid boundary contributions in partial integrations, we choose the 
integration path in such a way that the integrand vanishes at the endpoints of all paths 
or that the integration paths are closed in the complex plane. Clearly, the integration 
paths depend on the boundary conditions for 4. For the moment we are only interested 
in finding solutions of equation (4) and do not care about particular boundary 
conditions. Therefore, we need not specify the integration paths any further at the 
moment. Details about the choice of integration paths will be given during the 
discussion of the examples in § 4. 

The problem to be investigated now is the following. What are sufficient conditions 
which the generators of the individual transformation steps have to satisfy, such that 
the matrix elements of each step (given in equation ( 5 ) )  solve equations (6a)-(6d) 
and that the composite transform (given by equation (7)) fulfils (6e) and ( 6 f ) ?  A 
solution to this problem is presented in the following section. 

3. Sufficient conditions for finding exact quantum mechanical transforms 

Proposition 1. A sufficient condition for equations (6a)  and (66) or (6c) and ( 6 d )  to 
be fulfilled by the semiclassical matrix element of equation ( 5 )  is that the generator 
of the transformation is of one of the following forms 

We prove this statement for a generator of type 2. The coordinate transformations 
resulting from generator ( 8 a )  are 

aF 
qn+1=- -  -f(qn) 

aPn + 1 

A prime always denotes the derivative with respect to the argument of the function. 
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In order to give the quantum mechanical version of equation (9b) ,  we use the ordering 
prescription 

Then, 
en = (h/i)(a/ax) 

f i ” + l c p ( X )  =Pn+l(4n,Bn)cpCX) = [ f i n  -g’(4n)l/fl(4n)cp(X) 

applied to a function cp of the old position eigenvalue x is given by (4“ = x, 

The semiclassical matrix element for transformation (8a )  is given by equation ( s a )  as 

cpb, Y )  = (qn(x)lPn+l(Y)) = [f’(x)/2..ihI1’* exp{i/b[yf(x)+g(x)D. 

The function cp has the following properties 

Using the ordering prescription (10) we obtain 

Comparison with equation (9b) shows that equation (66) is fulfilled. An analoguous 
proof holds for generator (8b)  of type 3. 

The semiclassical representation of the transformations remains exact if one adds 
an arbitrary differentiable function h (pncl) on the RHS of equation (Sa)  or a differenti- 
able function y(qn+l) on the RHS of equation (86). But it is not necessary to take 
into account this generalisation because it is always possible to shift any function of 
the new variable into the generator of the next step of the composite transformation. 
We take this statement as proposition 2. 
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Proof. The direct calculation shows that in either case (we use the abbreviation 
t = CPn -g‘(qn)l/f’(qn)) 

A function y(qN) in the generator of the last step is of no influence on the dependence 
of qN on qN-1 and P N - 1 .  The function y can be left arbitrary as long as we only 
require to map H l ( q l ,  p,) onto qN. According to ( 5 6 )  and (7) y produces the factor 
exp{iy(E)/h} in $ ( x ,  E). Therefore, y(qN) can be exploited to normalise the function 
4(x, E) (see example 2 in 9 4 ) .  

If we compose several steps of the form (8a)  and (861, then the integral representa- 
tion (7) of the total transformation is not exact in general. Therefore, it is necessary 
to deal with still simpler forms of transformations. 

Proposition 3. A sufficient condition for equation (7) to provide the exact representa- 
tion of a composite transformation, if for each step the semiclassical representation 
is inserted, is that the intermediate steps are given by generators of the following form 

F2(qn,~n+l)=an~n+lqn +gn(qn) (12a) 

F 3 ( P n ,  qn+l)=bnqn+lPn + P n ( P n )  (12b)  
where a and b are constants. 

Proof by induction. Because (12)  is a special case of (8), it is clear that for each step 
of the composite transformation equations, (6a )  and (66) or ( 6 c )  and ( 6 4  are fulfilled. 

Next we assume that the matrix element for the composition of the first 21 steps, 
given by 

satisfies the following equations [41= x ,  $ 1  = (h/ i ) (a/ax)]  

h a  
- - , Y ( x ,  ~ ) = - ~ r - ( $ 1 , h q ) ~ ( x ,  y )  (13a)  i a y  

Y X ( X ,  ~ ) = q r - t 4 1 , @ 1 ) ~ ( x ,  Y ) .  (13b)  
The transformation from coordinate system r -  to coordinate system r is given by the 
generator 

F2(qr-, pr) = ar-qr-pr +gr-(qr-)- 

qr = ar-qr- (14a)  

pr = [pr- - g i -  (qr-)l/ar-* (146)  

Accordingly 

The transformation matrix element between coordinate system 1 and coordinate 
system r is given by equation (7) as 
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We find 

and 

Since we assume the path of integration to be such that no boundary contributions 
arise in integrating by parts, we obtain 

Using equations (13) we find 

4 (x, z ) fulfils the partial differential equations, by which the correct transformation 
matrix element is characterised. Therefore the proposition is valid for the transforma- 
tion between coordinate systems 1 and r. By analogy one can show that the further 
transformation step given by a generator of form (126) results in the exact transforma- 
tion matrix element for the transformation ‘between coordinate systems 1 and r+. 
Therefore, the exactness of this procedure is shown €or any number of steps. 

In an indirect way linear transformations fulfil condition (12a) or (12b). The most 
general linear transformation from coordinate system n to coordinate system n + 1 is 
given by the generator (without loss of generality we take a generator of type 2; for 
a generator of type 3 the argumentations would be analogous) 

Fz(qn, pn+i) =Aq; +Bqflpfl+i+ CP’,+I + D q n  + E ~ n + i  +F 
where A, B, C, D, E, F are constants. By proposition 2 we can shift the terms Cp:+l 
and Epntl into the next transformation step. The remaining 

gz(qn, Pn+i) =BqflPfl+l +Aq: +Dqn +F 
is of form (12a). 

Now we study the composition of two transformation steps given by generators 
of the form (8a) and (8b) .  We put n = 1 in (8a) and n = 2  in (8b). The composite 
transforms are given by ( l l a )  and ( l l b )  if we put n = 1 and h EO, We adopt the 
following notation 

~ ( x ,  2) =(q l (x )~n(z ) )=  (r(x)/2rih)’/ ’exp(i[z~(x)+g(x)l) 

v(z, E )  = ( P ~ ( ~ ) M E ) )  = ( a ’ ~ 7 ~ 7 r i t i ~ z  exp(i  [ ~ a ( z ) + p ( z ) ~ )  
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From proposition 1 we know that 6 and 77 fulfil the following differential equations 

Therefore, JI has the following properti.es: 

= -P3(41,81)JI(X, E ) .  

Comparison with (1  l a )  shows that (6e) is fulfilled. 

With the abbreviation s = [(h/i)(a/ax) - g’(x)]/f’(x) we obtain 

EJI(x,E)=(-,f(x)--+- 1 P‘ (s )  h -)$(x,E). a”(s) 
a (s) a’(s) 2i [a’(s)]  

Equation (6f) is fulfilled, if (16) leads to 

E$(& E )  = {[-f(x) -P’(s)l/a’(s))JI(x, E ) .  (17) 

Equation (17) is equivalent to equation (16) if at least one of the following two 
conditions is fulfilled. 

(i) f ( x )  = ax and the ordering prescription is such that 

h a“(S*) ;--- 
a’($) 2 a’($) 2 a‘($) a‘(S*) 2i [ a ’ ( ~ * ) ~ ] ’  

1 f=a- x-+-- a i  a ,  1 a 1 -=- 

(ii) CY (z)  = bz so that a ” ( z )  = 0 i.e. (17) is fulfilled if either F2 or F3 is of the simple 
form (12). 

If both of these conditions are not fulfilled, then the quantum mechanical evaluation 
of f (x) /a’(s)  creates terms containing higher-order derivatives of CY and f than the 
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ones which occur in equation (16).  These terms then are of order h2 and of higher 
order in h (see example 3 in § 4). 

A similar calculation shows that the semiclassical composite matrix element of one 
transformation step of form (8) and several steps of form (12) is still exact. 

We can summarise the results of 0 3  as follows: A sufficient condition for the 
matrix element of a canonical transformation to be given exactly by equation (7), 
where each intermediate step is given by equation (5), can be expressed as follows. 
At most, one step is of form (8), all other steps are of form (12). If several steps are 
of form (8), then the error is of order hZ and the composite matrix element of equation 
(7) is a uniformly valid semiclassical approximation to the exact wavefunction only. 

4. Examples 

In this section we present a few examples to the statements given in the previous 
section. For simplicity we restrict ourselves to examples which need two transformation 
steps only and which can be solved with small effort by conventional methods. So it 
is easy to compare our results with the standard solutions. 

4.1. 

A one-dimensional particle moving in a linear potential is an example for which the 
Hamiltonian 

Hl(q1, p1) = ( 2 m ) - ' p ? - ~ q l  (18) 

can be mapped onto H3(q3, p 3 )  = q3 in two steps, whose generators fulfil condition (12). 

F : ' 2 ( q i , ~ z ) = q i ~ z  ( 1 9 ~ )  

generates the identity transformation and 

According to (5) and (7) the position space wavefunction for energy E then is 

- ---I 2mihdK 1 
dz e x p [ i ( x z + F - G  z 3  )]. 

The spectrum of p1 is the entire real axis R and because of p z  =pl  we have to integrate 
t, the eigenvalue of p 2 ,  over the entire real axis. The integrand is oscillatory for 
z +fa. However, we could also add the term -hsp$/i to (19b) leading to the 
converging factor exp(-Ez2) in (20) and take the limit E + O  afterwards. Then (20) 
satisfies all the requirements of 00 2 and 3. 

(20) is an integral representation of the Airy function, which is known to be the 
exact wavefunction of a linear potential (see Watson 1966, 0 6 .4) .  
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Stationary phase evaluation of the z integration leads to the standard WKB 
wavefunction having a caustic singularity at x = - E / K .  The same WKB function can 
be obtained by using the generator 

1 
F : + ~  ( q l ,  q3)  = - (2mq3 + 2 m ~ q , ) ~ ’ ’  

3mK 

for the one step transform from H1 to q3 in the semiclassical formula for the matrix 
element (ql(x) lq3(E)) .  It is evident that (21)  does not fulfil requirement (8). Therefore 
it is not surprising that it leads to a wavefunction having a turning point singularity. 

4.2. 

The Hamiltonian 

~ l ( q r , p l ) = ( 2 m ) - ’ p : + t m w ’ q :  (22)  

of the harmonic oscillator can be mapped onto H3(q3,  p 3 )  = q3 in two steps, where the 
first generator is of form (12)  and the second one is of form (8). The first transformation 
with the generator 

( 2 3 ~ )  &+’ (41, p 2 )  = aqlp2 + b”: 
where a is an arbitrary constant, maps H1 onto 

H&Z, P Z )  = iWp2q2+a2p:/2m. 

The second transformation with the generator 

F : + ~  ( p 2 ,  q 3 )  = iq3 ln(cpJ/w +a2p:/(4imw) (236)  

where c is a constant, then maps H z  onto q3.  In order to achieve the correct 
normalisation, we may add to the RHS of (236)  an appropriate function of q3,  y ( q 3 ) .  

The use of complex extensions of canonical transformations can be motivated 
along the following lines. For the moment let us shift the term a2p:/(4imw) from 
(236)  into (23a) ,  which is allowed by proposition 2 of, 0 3 .  Then (2:a)  generates a 
complex linear transformation, which maps HI onto H2=iwpz q2.  H1 has a purely 
discrete spectrum and the lines H l ( q l ,  pl)  = E are compact curves (ellipses) in the 
phase space, whereas k3 has a purely continuous spectrum and the lines H3(q3,  p 3 )  = E 
are open curves (straight lines) in the phase space. Because of this change in spTctrum 
the quantum mechanical representation of the transformations which map HI onto 
k, must not be unitary (see also Leaf 1969). It has been pointed out by Kramer et 
al (1975) that complex linear canonical tranformations are not unitary in quantum 
mechanics. In addition, an appropriate complex linear transformation can map closed 
conic sections (ellipses, the curves H1 = constant) onto open conic sections (hyperbolae, 
the curves -iE?2/w = q2p2 = constant) and hyperbolae have the same topology as 
straight lines. Finally, any linear canonical transformation can be handled exactly in 
quantum mechanics. Therefore, a complex linear transformation is the appropriate 
first step in order to map ellipses onto straight lines or H1 onto H3. The factor i in 
front of the In term in (236)  is necessary in oEder to arrive at a real function H3 i.e. 
it is inserted in order to cancel the factor i in H2. 
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The wavefunction obtained from generators (23) is 

1n(cz )). 
mwx2 a 2 z z  E =mj d z ( 2 )  exp(kaxz--+--- 2h 4mwh hw 

eiy(E)/fi 1 /z 

To bring thisintegral into a more familiar form, we perform the variable substitution 
z = - 2 i s J m ~ w / a  and set the free constant c to a definite value. The dimension of 
c should be chosen in such a way that cz is dimensionless and for reasons of a more 
convenient normalisation we choose c = ia ( 2 ~ h w ) - ~ / ~ .  The integrand then is indepen- 
dent of the constant a. 

2h 

ds exp[2s~(mw/h) ' /~ - s ~ ] s - ~ ' ~ ~ - ~ / ~ .  (24) 

The constant d combines some unimportant constants. 
The first transformation step involves a complex transformation. Therefore, the 

integration variable z no longer needs to be restricted to the real axis. The integrand 
in (24) has an essential singularity at infinity and for general values of E a branch 
point at zero. Besides, the integrand has no singularity and no zeros in the complex 
plane. A good candidate for the endpoints of the integration path is the point infinity, 
if the integration path goes to infinity in such a direction that the integrand goes to 
zero along this path, e.g. along the positive real axis. The integration path must 
encircle the singularity at the origin. Altogether the following integration path fulfils 
all requirements. It comes in from infinity along the positive real axis until it has 
nearly reached the origin. Then the path encircles the origin once and goes back to 
infinity along the real axis on the next sheet of the Riemannian surface belonging to 
the branch point at the origin. 

For those particular values of E for which E/hw ++ is a positive integer, the branch 
point turns into a pole and the integration path can be deformed into a circle enclosing 
the origin. These particular values for E are just the eigenvalues of Al. 

The exponential function in the integrand of (24) is the generating function for 
Hermite polynomials. Equation (22.9.17) in Abramowitz and Stegun (1965) gives 

For the energy value E = ( n  +&)hw, the s integral in (24) has the value 

Therefore 
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To obtain the standard normalisation of the oscillator functions, we choose 

or 

After multiplication of both generators (23) by -1 the transformations still map 
H1 onto 4 3 ,  but now the exponentially exploding wavefunction, containing the factor 
exp(mwx2/2h), is created. 

4.3. 

Next we give an example for the composition of two transformations of form (8) and 
for its error. 

A one-dimensional problem, which is equivalent to the radial problem of the 
three-dimensional isotropic harmonic oscillator, is given by the Hamiltonian 

where the constant A will be specified later. 
The transformation given by the generator 

F:’2 (41,P2) = imwq?p2+$imoq:+(h/i)A ln(ql/xo) 

where xo is a constant with the dimension of a length, maps H1 onto 

H2(q2, P 2 )  = 2iwq2p2(1 +Pz)+hwA(1+2P2). 

F 2  is chosen in such a way, that p2 is dimensionless. The transformation given by the 
generator 

F:‘3 ( ~ 2 , 4 3 ) =  (h/2i)[(A -43 /hw)  lnp2+(A +43 /Aw)  ln(p2+ 111 (266) 

maps H2 onto H3(q3,  p 3 )  = 4 3 .  
The corresponding wavefunction, given by (5) and (7) is 

mwx2 1 (A/2 -1 /2 -E /2hw)  $(x, E )  = N X ~ + ~ ’ ~  J dz exp( 2h hmwx2z)z 

In  this example we do not care about normalisation and all constant factors are 
combined into the unspecified normalisation constant K. 

For the z integration in (27) we choose the same integration path as for the s 
integration in (24). 

Direct calculation shows that i,b (x, E )  fulfils the differential equation 
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The last term on the RHS is the error caused by the composition of two transformations 
whose generators fulfil only (8) but not (12) .  Even though function (27)  is not the 
exact wavefunction, but only a semiclassical approximation, (27)  does not contain the 
factor (2mE - m 'w2x - A2AZ/x 2)-1/4 which causes the singularities of the primitive 
WKB function at the turning points. (27)  is an integral representation for a confluent 
hypergeometrical function and this type of function does not have any singularity in 
the open interval (0, +CO). Therefore, (27)  is a uniform semiclassical approximation 
to the correct wavefunction. 

We can construct the exact wavefunction for Hamiltonian (25)  by the following 
procedure. We take a modified Hamiltonian Gl where A2 is replaced by A' = A 2  +: 
and use the generators (26)  with A replaced by A. The resulting wavefunction 4 
fulfils the differential equation 

i.e. $ is the exact solution of the Schrodinger equation belonging to the original 
Hamiltonian H1 given in (25) .  Using for A 2  the physical value I([+ 1 )  gives A = 1 + f 
and 

The branch point of the integrand at z = 0 turns into a pole for 

E = ztw(2n + f + 1 )  (29) 

and n = 0, 1 ,  2 , .  . . . These particular E values are the exact eigenvalues of the 
Hamiltonian gl (see problems 65 and 66 in Flugge 1971). 

From (28) we can obtain another integral representation for the wavefunction of 
the harmonic oscillator given by Hamiltonian (22) .  The centrifugal term in (25) 
disappears for 1 = 0 or 1 = - 1 .  According to (28) ,  1 = 0 leads to functions containing 
a factor x i.e. to the antisymmetric functions with $(x = 0) = 0 .  1 = - 1  leads to the 
symmetric functions. (29) shows that the choice 1 = 0 leads to the energies E, = 
ztw(2n + 1 +$) i.e. to the correct energies for odd oscillator states. 1 = - 1  leads to the 
energies Ek = hw (2k +;) i.e. to the correct energies for even oscillator states. (28)  gives 

(306) 

After the substitution t = (z  +$mw of the integration variable, (30) leads to the 
integral representation of the oscillator functions given by Kruger (198 1 ) .  

For w = 0 the Hamiltonian (25)  describes the radial problem for a free particle. 
However, the transformations given by the generators (26)  become singular in the 
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limit w = 0. In this limit a possible choice for the generators is 

F:+’(q1, P Z )  = -q:p2--iW+;) In (41/XO) 

These transformations map 

k l ( q 1 , p l )  = ( 2 m ) - ’ p : + ~ ~ ( f + ~ ) ~ / ( 2 m q : )  

onto q 3 .  xo is a constant with the dimension of a length, y o  is a constant with the 
same dimension as p 2 .  The corresponding wavefunction 

( ( x , E ) = N / d z x  1+1 z 1-1/2 exp 

fulfils the differential equation 

The substitution s = i x ~ ( m E / 2 ) - ’ / ~  leads to a more familiar integral representation 
of Bessel functions with half integer order 

ds si-”’ exp - (s - l / s ) J 2 m E  . (2”R -> 
After multiplication of both generators ( 3 1 )  with -1 the transformations still map H1 
onto q3.  But then the function, which is singular at the origin, is created. 

5. Conclusions 

We have shown that the quantum mechanical wavefunctions can be constructed as 
functions of the generators of an appropriate sequence of classical canonical transfor- 
mations, if these generators fulfil certain requirements. The wavefunction constructed 
according to equations ( 5 )  and (7) is exact, if at most one generator is of form (8) and 
all other generators are of form ( 1 2 ) .  If several generators are of form (8) then the 
wavefunction is not exact but only a semiclassical approximation to the exact one. 
Even in this case the multistep approximate wavefunction may be better behaved 
than the primitive WKB function, which corresponds to a one-step transformation of 
the Hamiltonian onto the new position variable. For example in 0 4 .3  the error of 
the multistep wavefunction consists in a shift of the angular momentum value and 
can be easily removed by starting from a modified Hamiltonian. 

In some cases it might also be useful to map H1 not onto qN itself but onto some 
convenient function of qN and p N .  

In this paper we have treated the simple case of time-independent transformations 
and one degree of freedom only. The value of the method would be increased 
significantly by generalising it to time-dependent transformations and to several 
degrees of freedom. This generalisation will be attempted in a future publication. 
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